
507

Appendix G

SPHERES SOFTWARE DESIGN

This appendix presents the software design of the SPHERES satellites. The software

developed by the SPHERES team consists of two main elements: the boot loader program

and SPHERES Core. Figure G.1 illustrates the four pieces of software which operate in a

satellite: the Texas Instruments boot firmware readies the DSP for operations; the Sun-

dance custom firmware initializes the interfaces of the SMT375 board with the SPHERES

avionics; the SPHERES boot loader allows to reprogram the operating system and loads

the program into memory; the SPHERES Core Software (SCS) is the operating system

which runs the satellites during normal operations.

Figure G.1 Satellite software components

C6701 DSP Boot

SMT375 Boot

SPHERES
Boot Loader

SPHERES
Core

TI boot process firmware for C6701 (µs)

Sundance custom firmware for SMT375 use in SPHERES (ms)

SPHERES boot loader to re-program satellite operating system
(2s without load; 2-5min with load)

SPHERES Core Software for standard operations

508 APPENDIX G

This appendix is divided into three main sections: the boot loader, the SPHERES Core

Software operating system design, and the Standard Support Libraries.

G.1 Boot Loader

Figure G.2 shows the program development process for SPHERES. The SCS is pro-

grammed in assembly, standard ANSI C, or C++ using the Texas Instruments Code Com-

poser Interface [TI, SPRU328B]. After compilation, the executable binary is translated

into a text file and organized to enable storage in FLASH memory with maketext (this

process is incorporated into the ground-based interface). This file is then transferred to the

satellite via wireless communications. The boot loader reads the file from FLASH and

loads it into RAM for operations. For ISS operations the file is packaged in a compressed

file format for delivery to the ISS interface, which then decompresses the file and trans-

mits it to the satellite in the same way that the ground-based interface does.

The TI Code Composer (CCS) interface assembles, compiles, and links the source code of

the scientist and the DSP/BIOS kernel. The output from CCS is normally loaded directly

into the RAM of a DSP system, therefore it requires some modifications for storage in

FLASH. The function maketext utilizes two programs to enable transfer of the files to

the satellites and their storage in FLASH. First, the TI provided program hex6x.exe is

Figure G.2 SPHERES program development sequence

Loader

SPHERES
ZIP

PC
Satellite

CCS Programming
(ASM/C/C++)

RF

Maketext

KC GUI

ISS GUI

ISS SSC

APPENDIX G 509

used to convert the RAM ready output to hexadecimal format for storage in FLASH. This

process involves separating the program into several sections and identifying the intended

destination and size of those sections in RAM during operations. Next, the Sundance pro-

vided hex2text.exe is used to convert the binary hexadecimal into ASCII an text file.

The text file is used in the wireless data transfer. The transferred file is converted to 32-bit

words by the software on the satellites and stored in FLASH. When ready to run, the boot

loader program on the satellites reads the sections written in FLASH and copies them to

RAM.

G.1.1 Boot Loader Transfer Protocol

To balance the need for minimum transfer time together with the requirement for no data

errors in the stored program, the boot loader uses packages of 20 packets to transfer the

data. Each package must be acknowledged as received correctly or with a request to repeat

the packet. The need to only acknowledge reception every 20 packets reduced the program

upload time by both reducing the amount of data transferred and not requiring as many

changes between transmission and reception in a unit.

Figure G.3 illustrates the boot loader data transfer protocol. The first step of both the PC

and the satellite programs is to configure their DR200x transceivers (See Appendix H).

Because programs are intended for specific satellites, the boot loader master program (on

the PC) configures the DR200x to transmit only to a specific satellite; all other satellites

will ignore the program. The satellite boot loader configures the DR200x for general oper-

ations. Table G.1 shows the boot-time configurations of the DR200x.

After initialization the master programs transmits a "start" packet to indicate to the satel-

lite that data is available. It will transmit this packet at 1Hz until it receives an acknowl-

edgement from the satellite. The satellite boot process is described below.

After the acknowledgement is received, the master program transmits the first packet indi-

vidually, and awaits for a response. This packet is special because it includes the total pro-

510 APPENDIX G

Figure G.3 Boot loader transfer protocol

TABLE G.1 DR200x configurations for boot load process

PC Satellite
TO Satellite ID 0x00

FROM 0x30 Satellite ID
MODE ASK

RF data rate 56.6kpbs
Packet size 6 then 75 6

Laptop Satellite

InitializeInitialize

Start Packet

Start Packet

Loader Ready

First Packet

First Packet OK

Package 1 Packet 1

Package 1 Packet 2

Package 1 Packet 3

Package 1 Packet 20

Package OK

Package 2 Packet 1

Package N Packet M

FLASH Success

Done

Load Program

APPENDIX G 511

gram size, that is, the amount of data to be transferred. The satellite will use this value to

determine when it has received the full program, before overwriting the current program

in FLASH. After the first packet has been acknowledged, the master program starts to

transmit packages of 20 packets each. If a packet is not received correctly, the satellite

requests a repeat, as illustrated in Figure G.4. This can be due to a data error (e.g. check-

sum error) or a timeout. Similarly, if the master does not sees a response after a timeout

period, it transmits the packet again. Once all data has been received and confirmed with

the checksums, the satellites unlocks the FLASH write function and overwrites the old

program with the new one.

The boot loading process uses three types of packets: command/reply packets, first packet,

and general packets. All packets contain a standard five byte header which indicates the

destination (to), origin (from), packet number (pkt), command (cmd), and data size (len).

The command/reply packets (Figure G.5, Table G.2) have one single byte of data, the

command. The data packets (first and general) follow the header with a package number

(pkg) and a packet number (pkt). The first packet (Figure G.6, Table G.3) has a 32-bit

integer which indicates the total size of the program (in 32-bit words), followed by 15 32-

bit words. General packets (Figure G.7, Table G.4) contain 16 program words (64 bytes).

Data packets end with a 32-bit CRC (4 bytes).

512 APPENDIX G

Figure G.4 Boot loader transfer protocol error handling

Figure G.5 Boot loader command/reply packets

Laptop Satellite

Package n Packet 1

Package n Packet 2

Package n Packet 20

Package ERROR

Package n Packet 1

Package n Packet 20

Package OK

Package n+1 Packet 1

Package n+1 Packet 1

Package TIMEOUT

Package n+1 Packet 1

Package n+1 Packet 1

Package OK

to from pkt cmd len command

SPHERES Header

APPENDIX G 513

TABLE G.2 Boot loader command/reply packet structure.

Byte Width Name Function
1 1 to The intended recipient.
2 1 from This satellite’s ID.
3 1 pkt Packet counter byte, should change with

every packet.
4 1 cmd Command byte shared with SCS, there-

fore it must be 0x7F
5 1 len The length of the data in the packet = 0x01
6 1 command From satellite to laptop:

FL2EX_READY
FL2EX_NO_PROGRAM
FL2EX_INVALID_COMMAND
FL2EX_PACKAGE_REPEAT
FL2EX_FLASH_SUCCESS
FL2EX_PACKET_OK

From laptop to satellite:
EX2FL_PROGRAM
EX2FL_RUN

Figure G.6 Boot loader first data packet structure

TABLE G.3 Boot loader first packet structure

Byte Width Name Function
1 1 to The intended recipient
2 1 from This satellite’s ID
3 1 pkt Packet counter byte
4 1 cmd Command byte (0x7F)
5 1 len The length of the data in the packet = 0x46

to from pkt cmd len pkg pkt=0 prog size
(1x32 = 4 bytes)

data
(15x32 = 60 bytes)

CRC
(32)

SPHERES Header

75 bytes

514 APPENDIX G

G.1.2 Master

The implementation of the master program which runs on the PC to upload the programs

has four main states as shown in Figure G.8. After initializing the DR200x as described

above, the program enters idle mode and waits for a reply from a satellite. The actions of

the master program in each state are as follows:

6 1 pkg Package number
7 1 pkt Packet number (1-20)
8-11 4 prog size Total program size (in 32-bit words)
12-72 60 data 15 program words
72-75 4 crc 4 byte checksum

Figure G.7 Boot loader general data packets structure

TABLE G.4 Boot loader general packet structure.

Byte Width Name Function
1 1 to The intended recipient
2 1 from This satellite’s ID
3 1 pkt Packet counter byte
4 1 cmd Command byte (0x7F)
5 1 len The length of the data in the packet = 0x46
6 1 pkg Package number
7 1 pkt Packet number (1-20)
8-71 64 data 16 program words
72-75 4 crc 4 byte checksum

TABLE G.3 Boot loader first packet structure

Byte Width Name Function

to from pkt cmd len pkg pkt data (16x32 = 64 bytes) CRC (32)

75 bytes

SPHERES Header

APPENDIX G 515

• Idle - sends the EX2FL_PROGRAM command at 1Hz to the satellite until it
gets a response or the program is terminated manually. If it receives the
FL2EX_READY response it starts sending the program.

• Sending - sends packets until it is done or a pre-specified number of errors is
reached (data errors or time outs). It transmit the first packet only, and awaits
a response for that one packet the first time. Thereafter it transmits (or re-
transmits) packages of 20 packets. When the last packet has been acknowl-
edged it switches to the wait state. If the maximum number of error is
reached it returns to idle.

• Wait - awaits a FL2EX_SUCCESS packet because all the program has been
transferred. If the response is not received after a timeout it returns to idle to
start again, since a failure in the burning the FLASH is assumed.

• Done - returns the DR200x configuration to normal operations (broadcast
mode, 32-byte data) and exits.

Figure G.8 Master program state diagram

Idle

Wait

SendingReceive “ready” or “repeat”

Done

R
ec

ei
ve

“s
uc

ce
ss

”

Manual program termination

N
o

m
or

e
da

ta

More data

Timeout

Max errors or timeout

516 APPENDIX G

G.1.3 Loader

The boot loader program on the satellites constitutes the only critical software element in

the SPHERES project. Therefore, it has been programmed with minimal elements to

reduce the sources of errors. Further, it uses some redundancy and a fallback mechanism

to return the unit to operational conditions in case of a critical failure in the SCS.

Figure G.9 presents the state diagram of the boot loader program. The states are explained

below.

• Initialize - upon boot the loader initializes its hardware timers, reads the sat-
ellite identity and other information from a dedicated space in FLASH, ini-
tializes the DR200x modules and then checks to see if the boot loader mode
should be entered or not. Boot loader mode, the get program state, waits for
a program. The decision to enter boot loader mode depends on:

- A register in FLASH being previously set by the boot loader itself or
SCS.

- The operator depressing the Enable push button in the SPHERES control
panel for two seconds immediately after power on or upon reset.

Figure G.9 Satellite boot loader state diagram

Initialize

Get
Package

Get
Program

Enable PB > 2s ||
Enter Boot

N
o

PB
 &

&
 N

o
En

te
r B

oo
t

&
&

 N
o

Pr
og

ra
m

Load
Program

Infinite
Loop

St
ar

t P
ac

ke
t

m
ore data

no
 m

or
e

da
ta

no PB &
&

 no Enter Boot

&
& Program >

20
 e

rr
or

s

Loaded empty
program

APPENDIX G 517

If the boot loader mode is not entered, the boot loader checks if a program
already exists in the FLASH memory. If it does, it will go into load program
mode, otherwise it sends an FL2EX_NO_PROGRAM response and enters an
infinite loop (slowly dimming Enable LED) to indicate no program exists in
the FLASH.

• Get Program - in this state the satellite will flash the Enable LED slowly
until it receives an EX2FL_PROGRAM command from the PC. It will then go
to the Get Package state. If a satellite enters this state, it remains in this state
until a program is received, an EX2FL_RUN command is received, or the
satellite is reset.

• Get Package - executes the program transfer protocol described above
(obtains program size from the first packet, acknowledges the packet, and
then receives and acknowledges packages or 20 packets each). If there are
more than 20 errors during the program upload (data error or timeouts) the
loader returns to the Get Program state. If all the data is received, it stores
the data in FLASH and then goes to the Load Program state.

• Load Program - this state reads the FLASH memory and copies each sec-
tion of the program to its respective location in program RAM. After the pro-
gram is placed in memory, it sets the program pointer to the location of
c_int00 (main) to execute the program. If the stored program length is
zero or an error is detected with the program in FLASH, it will enter the infi-
nite wait loop to indicate that no program exists.

• Infinite Loop - this state indicates that no program can be run with the satel-
lite and therefore a new program must be loaded. The only way to exit this
mode is to reset the satellite and enter boot loader mode.

The boot loader program has a single main thread which to perform its functions.

Figure G.10 presents the general algorithm of the boot loader.

The redundancy and fallback mechanism include the use of hardware timers to control

communications timing and to write data to the FLASH. The FLASH requires special tim-

ing sequences to start writing and between writing each sector, therefore the bootloader

uses hardware timers to guarantee the timing. The timers do not create interrupts, they are

polled to maintain a single-thread program. As discussed above, the boot loader initializes

the DR200x modules. The reason is that the SCS programs can modify the DR200x con-

figurations. The load program state will return the DR200x configurations to the standard

SCS protocol, so that new programs are not jeopardized by configurations set in previous

518 APPENDIX G

ones. Lastly, the use of redundant sectors of FLASH to store critical values to identify the

satellite and its configuration creates redundancy in the system. The use of these sections

is explained further below.

G.1.3.1 FLASH Variables

Critical values of the satellite are maintained in redundant FLASH sectors. There are two

copies of these variables (referred to as locations ’0’ and ’1’), such that if one copy is cor-

rupted, the second copy can be used. The variables stored in these special sectors are:

unsigned FlagAppInFlash; // existence of a program
unsigned AppLength; // length (words) of program
unsigned EnterBoot; // command to enter boot
unsigned ID; // satellite ID
unsigned BattTime; // time satellite has been on

Figure G.10 Satellite boot loader general algorithm

Loader

initialize timers
read FLASH variables
initialize DR2000
check enable PB & FLASH variables
if enter loader
 wait for data in commport
 call get program
if application in FLASH
 call load application
else
 enter infinite loop

get program
 get first packet
 set transfer size
 while more to transfer
 get next package
 get 20 packets
 if error repeat package
 save data to FLASH

load application
 for each section in FLASH
 copy section to RAM
 set program vector to 0x0

APPENDIX G 519

unsigned TankTime; // estimate tank usage
float BeaconPos[6][3]; // global metrology setup
float BeaconDir[6][3];
float AccelScale[3]; // accelerometer scale factors
float AccelBias[3]; // accelerometer bias
float GyroScale[3]; // gyroscope scale factors
float GyroBias[3]; // gyroscope bias
unsigned count; // count of FLASH storage
unsigned checksum; // checksum of FLASH memory
unsigned ver; // boot loader version
unsigned Padding[7]; // unused

The most important variables to the boot process are:

• FlagAppInFlash - indicates if a program has been stored in FLASH
memory. A value of 0x12ABCDEF indicates a program is present. Any
other value indicates a program is not present (or is corrupt).

• EnterBoot - if set to 0x1 it will enter the boot loader mode and wait for a
program even if one already exists and the enable push button has not been
depressed during boot time. This allows the SCS to command the satellite to
enter boot loader mode through the wireless communications systems, with-
out the need for the operator to use the control panel. But, since the boot
loader only changes this byte back to zero after a program has been loaded, it
also effectively erases any current program in the satellite.

• ID - the satellite ID, which will always be matched to the packets to ensure
the data is for this satellite.

• Count - a count of how many times these special FLASH variables have
been saved. The count is used to identify the latest information between the
two storage locations, since the boot loader always guarantees to the SCS
that the latest information will be in one location ’0’. Therefore, if location
’1’ contains the latest information, it is copied over to location ’0’.

• Checksum - a checksum of all the previous values stored in the sector. If
the latest version of the sector is corrupted, the boot loader checks the other
sector. If the other sector is correct, it is copied to the corrupted sector, and
the boot loading process continues. If both sectors are corrupt, the boot
loader creates a new sector with the default values shown in Table G.5

520 APPENDIX G

TABLE G.5 Boot loader FLASH variables default values

Variable Value
FlagAppInFlash 0;

AppLength 0;

EnterBoot 1;

ID 0x39;

BattTime 0;

TankTime 0;

BeaconPos[6][3] {0};

BeaconDir[6][3] {0};

AccelScale[3] {0.0};

AccelBias[3] {0.0};

GyroScale[3] {0.0};

GyroBias[3] {0.0};

count 0;

checksum <new checksum>;

ver 0x31;

APPENDIX G 521

G.2 SPHERES Core

The SPHERES Core Software (SCS) layer acts as a buffer between the user-provided

experiment code, the DSP/BIOS operating system, and the satellite hardware. The Texas

Instruments DSP/BIOS [TI, SPRU423B] real-time operating system is used as the operat-

ing system on the SPHERES satellites. This kernel provides multi-processing capability,

inter-process communication, and a number of input/output management tools. Through

multiple execution threads created using DSP/BIOS, SCS controls the scientist provided

functions which implement their specific algorithms. In this manner, the SCS creates a

generic real-time operating system for the development of metrology, control, and auton-

omy algorithms. The core software encapsulates the hardware interfaces of the satellites

by providing software interfaces to them. The SCS also preforms several housekeeping

and data management tasks. The main functions of the SCS are:

• Control. The SCS implements a digital real-time controller and executes the
code provided by scientists at a specified rate. The control module imple-
ments the test-management functions which allow a program to have multi-
ple tests.

• Propulsion. SCS interfaces between the user code and the digital outputs to
the propulsion hardware. The basic interface implements standard on/off
pulses commanded through an array of on/off times.

• Communications. The SCS manages the TDMA communications protocol,
handles incoming communications, and prepares standard and custom pack-
ets for transmission. The SCS also provides a module which allows scientists
to transfer data of variable lengths (longer than a standard packet).

• Metrology. The SCS implements several threads to capture data and run
metrology algorithms. High-priority threads collect the data. Middle priority
threads can process data at high frequencies. Two low priority threads are
implemented to run extended procedures in the background.

• Housekeeping. The SCS performs a number of routine tasks automatically
in the background: it monitors the tank usage, reports health status to the
control station, and downloads telemetry information.

The organization of the SCS modules with respect to the guest scientists modules, the

DSP/BIOS kernel, and the SPHERES hardware is depicted graphically in Figure G.11.

522 APPENDIX G

Figure G.11 SPHERES Core Software overview

HW DSP/BIOS SPHERES Core GSP

Comm

IMU

Global Met.

SW Interrupts

Standard
Science
Libraries

Tasks

HW Interrupts

Controller

Propulsion

Housekeeping

Comm

IMU

Global Met

Propulsion

GSP Background
Task

Control

Met. (IMU)

Background
Task

Test
Init

Controllers

Estimators

Maneuvers

Mixers

Met. (Global)

GSP Metrology
Task

Metrology
Task

SPHERES
Met. Task

Hidden Interfaces User-accessible Interface

Terminators

Math

Utilities

APPENDIX G 523

SCS makes use of five types of threads available in the DSP/BIOS kernel (listed from

highest to lowest priority): hardware interrupts (HWI), hardware clock interrupts (CLK),

software interrupts (SWI), periodic software interrupts (PRD), and semaphore driven

tasks (TSK). Figure G.12 presents the threads implemented by the SCS to create the

SPHERES generic operating system. The following threads are used:

• Hardware interrupts (HWI)

- IR Rcv - reception of a global metrology infrared signal.

- PADS Int - interrupt by the metrology FPGA indicating data availability.

- COMM Rx - reception of data through one of the commports

- CLK - an interrupt created by DSP/BIOS to drive the periodic hardware
clock interrupts

• Periodic Hardware Interrupts (CLK)

- Propulsion - creates the propulsion solenoid signals at 1kHz

- Comm TDMA Mgr - manages the TDMA transmission windows for the
satellite

• Software Interrupts (SWI)

- PADS - triggered from the PADS Int HWI, it collects the data, performs
some data processing, and stores the results for other processes

- COMM Tx - transmits data out through the commports one full packet at
a time during the TDMA transmission window

- PRD - a thread created by DSP/BIOS to manage periodic SWI’s

- Control Dispatch - manages the timing of the control software interrupt
at 1kHz, allowing simple changes in the rate of the controller interrupt

- Fast Housekeeping - keeps track of the state of health of the satellite and
triggers the watchdog to prevent a hardware reset

- Telemetry - downloads state information periodically

- Controller - implements the test management routines and runs the peri-
odic control algorithm specified by scientists

- KNL - the kernel process created by DSP/BIOS

• Background Tasks (TSK)

- Comm Mgr - provides the interface for all incoming and outgoing data

- PADS Global TX - used to trigger an infrared pulse for global metrology

524 APPENDIX G

- Estimator - runs the SPHERES standard estimator

- DataComm STL/STS - manages large data transfers by dividing it up
into standard SPHERES packets on the transmitting satellite and rebuild-
ing the data in the receiving satellite

Figure G.12 SCS threads

IR Rcv
H

W
I PADS Int

COMM Rx

CLK (BIOS)

C
LK

Comm TDMA Mgr

Propulsion

SW
I

PADS

COMM Tx

PRD (BIOS)

Control Dispatch

Fast Housekeeping

Telemetry

Controller

KNL (BIOS)

TS
K

COMM Mgr

PADS Global TX Estimator

GSP TaskDataComm STL FLASHDataComm STS

IDLE (BIOS)

CP Monitor

Pr
io

rit
y

Lo
w

es
t

H
ig

he
st

N
on

-p
re

em
ta

bl
e

Pr
ee

m
ta

bl
e

by
 H

W
I

an
d

hi
gh

er
 p

rio
rit

y
SW

I
Pr

ee
m

ta
bl

e
by

 H
W

I,
SW

I,
an

d
 h

ig
he

r p
rio

rit
y

TS
K

APPENDIX G 525

- CP Monitor - monitors the state of the commport interrupts upon boot

- FLASH - writes to the FLASH memory in the background, since the
flash requires several milliseconds between writing each sector

- GSP Task - allows guest scientists to run extended tasks in the back-
ground

- IDLE - the idle process created by DSP/BIOS

The SCS utilizes several global timers to maintain a system time, to trigger timed threads,

and to control timed events. Figure G.13 presents the major timers used in the SCS. Their

description follows.

• PADS Int - From the Metrology FPGA 1kHz hardware interrupt

- System Tick - Maintains the global system time in milliseconds. Reset to
zero when the satellite is reset (hardware or software reset).

- Control Tick - The control tick is used by the control dispatcher thread to
post new controller SWI’s. Because the control tick is based on the PRD
and the PRD on the PADS Int, the controller is always synchronized with
the system tick.

Figure G.13 SCS real-time clocks

H
W

I
C

LK
SW

I

Pr
io

rit
y

PADS Int System Tick PRD Tick 1 kHz

0.999992 kHz

Comm TDMA Mgr TDMA Window

PRD (BIOS)

Control Dispatch

1 kHz

Control Tick 1 kHz

Maneuver Time

Test Time

1 kHz

CLK (BIOS) CLK Tick

5 Hz ±20%

0.999992 kHz

TS
K

COMM Mgr

526 APPENDIX G

- Test Time & Maneuver Time - The test time and maneuver time reset
whenever a new test or maneuver starts, respectively. They are synchro-
nized with the system time.

• CLK - From the DSP hardware timer based on the SMT375 clock of
166.67MHz, which results in a period of 1.0078ms which gives a frequency
of 0.999998kHz

- Propulsion & Comm TDMA Window - The propulsion and communi-
cations TDMA manager functions utilize the SMT375 clock, rather than
the PADS clock. Therefore, these functions are slight off-sync from the
global system time. Because they operate through relative times (active =
off_time - on_time in both cases) the errors are always minimal.

• COMM Mgr - The communications manager task processes the packets
received from the control laptop, which include the command to start a new
TDMA frame. Because the laptop can have errors as large as 20ms, this pro-
cess operates at 5 Hz ±20%. This requires the satellites to store all the data
until a valid window appears, and breaks any correlation between the data
reception time and the time it was created, therefore packets are identified
with the system time when they are created.

These threads and timers support the modules of the SCS. The next sections describe the

modules of the SCS in detail:

• System

• Control

• Propulsion

• Communications

• Metrology

• Housekeeping

• Guest Scientist Program Interface

APPENDIX G 527

G.2.1 System

The system module includes the system initialization routines and maintains the global

satellite time and the satellite’s physical parameters.

The system is initialized using the standard C function void main(). It is a thread

which executes once after a reset to initialize the satellite and exits after completion. The

DSP/BIOS kernel starts the real-time environment threads after the main function com-

pletes. The function performs the following actions:

• Initializes the hardware timers, global bus, DR200x, metrology FPGA, and
satellite state estimate.

• Loads the FLASH variables to identify the satellite.

• Sets physical parameters.

• Runs the GSP initialization routines.

• Sets up hardware interrupts.

• Loads the DSP/BIOS kernel.

• The module is comprised of the following files:

The system module implements the local variables used to maintain the time of the satel-

lite and tests. These times are kept as follows:

• System time - Set to zero during program initialization. Updated in the
PADS Int HWI

• Test time - Set to SYS_FOREVER when a test is not running. It is increment
whenever it is not SYS_FOREVER (the control module starts the clock by
asking the system module to set it to zero) through the PADS Int HWI.

The system module also maintains the logical identity of the satellite. The logical identity

tells the satellite what role it plays within a distributed system. This allows a scientist to

decouple the physical serial number (i.e., the hardware ID used in the communications

system) from the logical role played by the unit during a test. In this manner, any satellite

can be used to perform any role.

528 APPENDIX G

Every program is identified by a unique number. This number is controlled by the

SPHERES team so that the ISS GUI can identify the program currently loaded in a satel-

lite and indicate the name of the program to the astronaut. The ground-based GUI shows

the integer identifier so that scientists also know which program is loaded. Neither the

SCS nor the interfaces control the sequence of the program ID, which means that the

SPHERES team members must manually ensure the numbers uniquely identify a program

readied for tests aboard the ISS.

The system module also provides a high-level interface to enable and disable interrupts

following the guidelines of the DSP/BIOS kernel. It includes a function to perform atomic

memory copy by handling the interrupts automatically.

The module also provides an interface to the physical properties of the satellite, including:

• satellite dry mass

• full tank propellant mass

• estimated total wet mass given current propellant consumption

• satellite inertia matrix and its inverse

• satellite center of mass (dry and wet)

• model of the thrusters: strength, direction, and location

Source Files

• init_sphere.c

• fpga.c

• main.c

• system.c

• spheres_physical_parameters.c

Internal Header Files

• init_sphere.h

• system_internal.h

Public Header Files

• fpga.h

APPENDIX G 529

• spheres_physical_parameters.h

• SMT335Async.h

• spheres_constants.h

• spheres_types.h

• system.h

530 APPENDIX G

G.2.2 Control

The control module uses two threads to implement a periodic routine which allows sub-

stantial calculations at a user-selectable rate. Rather than using a hardware interrupt based

on the hardware times, which is commonly done in embedded control systems, SCS uti-

lizes two software interrupts. Using HWI would give the controller a high priority and pre-

vent any other threads from executing while the control algorithm executes, unless special

steps are taken to enable certain levels of preemption within the hardware interrupts. By

using the software interrupts provided by DSP/BIOS, the SCS can easily configure the pri-

ority of the control interrupts and enable preemption by processes with more strict real-

time requirements or higher rates. The use of SWI also makes a hardware timer available

for other functions (it is used to control the timing of writes to FLASH memory).

The two threads which implement the control module are presented in Figure G.14. Their

functions are:

• Control dispatch - This thread executes at a constant 1kHz regardless of the
state of the satellite. Its purpose is to provide a simple interface to change the
rate of the controller with period increments of 1ms independently of the
controller itself. It also forms part of the synchronization routines so that
multiple satellites start the tests at the same time.
When a test start command is received by the communications module, it
indicates to the software dispatcher that a test will start. The dispatcher then
waits one second (1000 cycles) before starting the test, which gives the com-
munications module enough time to acknowledge the command.
The thread maintains a local timer to control the period at which the control-
ler software interrupt is posted. Once the dispatcher posts the controller
SWI, the controller will execute as soon as no other higher priority tasks are
pending, usually within micro seconds. Because the dispatch thread executes
continuously, the controller interrupt will be posted regardless of the state of
the satellite. It is the controller SWI that determines what action to take, not
the dispatcher.
The dispatcher also maintains the maneuver time when a test is running.

• Controller - This thread executes upon being posted by the dispatcher. It is a
state machine which implements the test management functions of the SCS.
Figure G.15 illustrates the state machine used by the controller thread. It has
the following states:

APPENDIX G 531

- Idle - When idle, the controller performs no actions. It waits for a new
test to start or the Enable PB to either enable the satellite (depressed for
one but no more than two seconds) or command a tank vent (depressed
for more than five seconds). The idle mode is indicated in the SPHERES
control panel by the Enable LED being off.
To start a test the operator must first enable the satellite by using the
Enable PB so the state goes to the Position Hold / Ready state. Scientists
can bypass the need to enable a satellite for tests in ground-based facili-
ties where starting a test is time-critical (e.g., the RGA). This feature is
also useful during operations at the MIT SSL where dozens of tests are
conducted in series to debug a program. The SPHERES team will ensure
that enabling a satellite is not bypassed for tests aboard the ISS.

Figure G.14 SCS controller module threads and general algorithm

PRD (BIOS)

Control Dispatch

Controller

SW
I

Pr
io

rit
y

Lo
w

es
t

H
ig

he
st

SWI_control_dispatch
 if (waiting for sync) decrease wait
 else
 decrease control tick
 if control tick zero
 post controller SWI
 reset control tick

SWI_Controller
 if new test
 initialize test

switch state:
 idle: wait for enable button
 transition: flash enable LED
 position_hold:
 if global enabled
 run Global Met with position hold
 else
 wait for test start
 vent_tank: open all solenoids for 12s
 user_control:
 manage maneuvers
 run user controller

532 APPENDIX G

- Transition - If the Enable PB is used to enable a satellite for tests, the
controller enters a transition state to allow the operator to deploy (let go
of) the satellite prior to entering the Position Hold mode. The transition
state is fixed at three seconds, and changes automatically to the Position
Hold state after the pause. The transition mode is indicated in the
SPHERES control panel by a flashing Enable LED.

- Position Hold / Ready - This state can operate in two ways, depending
on whether the global metrology system and the MIT estimator are avail-
able or not.
If the global metrology system and the estimator are available, then the
satellite will measure its position when released by the operator (after the
three second transition) and maintain that position until a test is started.
This helps operators locate multiple satellites without having to worry
about drift.
When the global system and/or estimator are not available, the satellite
performs no actions.
If the Enable PB is not explicitly bypassed in the program, the satellite
must be in Position Hold / Ready mode before a test is started.

- User Control - Once a new test is commanded and the unit is enabled (or
bypass enable is selected) the controller first runs the test initialization
routines. These include management of local variables, including the
change of state to user control, as well as executing the GSP test initial-

Figure G.15 SCS controller state diagram

Idle

Position
Hold

Transition

User
Control

Tank
Vent

Enable PB > 1s

3s

SW
Test
End

Comm Test End
Bypass Enable PB Set
Enable PB > 1s

12s

RF
Test Start

RF Test Start &&
Bypass Enable PB Set

Enable PB > 1s
SW Test End
Hold > 10s after SW Test End

En
ab

le
 P

B
 >

 5
s

APPENDIX G 533

ization functions. Because these functions are executed within the con-
troller SWI, they must run in the time allotted to one control period.
After the test is initialized, the controller performs maneuver manage-
ment functions to maintain the maneuver number and time, it then exe-
cutes the GSP controller functions.
The controller changes state again after a test has ended. If the GSP algo-
rithm indicates a successful test and the global metrology and MIT esti-
mator are available, the satellite will enter Position Hold mode for 10
seconds to cancel any residual velocity from the test. After the 10 second
position hold, the satellite returns to Idle.
If the test terminates successfully but there is no global metrology and/or
the MIT estimator is not available, the satellite returns to Idle.
If the test is interrupted using the Enable PB or via a wireless command,
the satellite returns to Idle immediately.

- Tank Vent - This state opens all the solenoid valves so that a tank is
completely empty before its removal. The state terminates automatically
after 12 seconds of firing the thrusters and always returns to Idle.

Source Files

• control.c

Internal Header Files

• control_internal.h

Public Header Files

• control.h

534 APPENDIX G

G.2.3 Propulsion

The propulsion module creates a software interface to control the thruster solenoid valves

with one millisecond increments. The module utilizes one main thread, CLK Propulsion,

to control the state of the solenoids. Because the thrusters create white noise which trig-

gers the ultrasound receivers of the metrology system, the thrusters cannot be active dur-

ing a global metrology cycle. The global metrology process is initiated by an infrared

pulse. Therefore, the IR Rcv HWI affects the propulsion module directly because upon IR

reception the thrusters are turned off until the Metrology module indicates that the global

metrology cycle has finished. Figure G.16 presents the two processes used in the propul-

sion module.

The propulsion CLK interrupt interfaces with the rest of the modules using an array of on/

off times for each thruster. These times are relative to the first time the array is read by the

propulsion interrupt, they are not relative to the satellite, test, or maneuver times. There-

fore, when any other module (usually the controller) commands a set of on/off times to the

propulsion module, it is equivalent of sending the command to an external module which

is not synchronized with the rest of the system. The timing of the propulsion module is

illustrated in Figure G.17.

By interfacing the propulsion module though an array of on and off times, the scientist can

simulate several types of discrete control actuators. In its simplest form, as illustrated in

Figure G.17, it commands on/off pulses which start at the same time and end at different

Figure G.16 SCS propulsion module threads

IR Rcv

H
W

I

CLK (BIOS)

C
LK Propulsion

Pr
io

rit
y

global metrology override (thrusters off)

propulsion thrusters periodic interrupt

APPENDIX G 535

times. But the scientist can also create algorithms to center the pulses, have them at the

end of a period, or mix them. This allows the implementation of several types of modula-

tion, including pulse width and frequency modulation. These possibilities are pictured in

Figure G.18

Figure G.17 Propulsion module timing diagram

Figure G.18 Propulsion modulation options

100.78 ms

100.78 ms

CLK

PRD

thr_times: thr_on[0,1] = [0,50]; thr_off[0,1] = [100,150]

(1.0078ms)

(1.0000ms)

Control

Thruster 0

Thruster 1

0 50 100 150

Thruster

0

1

2

3

on_time

off_time [100
 66
 30
 30]

[0
 0
 0
 0]

100ms control period

[100
 83
 65
 65]

[0
 17
 35
 35]

[100
 100
 100
 100]

[0
 33
 70
 70]

[100
 66
 100
 65]

[0
 0
 70
 35]

536 APPENDIX G

Source Files

• prop.c

Public Header Files

• prop.h

APPENDIX G 537

G.2.4 Communications

The communications module implements the TDMA protocol and provides both high pri-

ority and low priority queues for data transmission. The module uses several synchroniza-

tion and data management tools provided by DSP/BIOS to manage the data securely in a

multi-thread environment. Appendix H presents details on the TDMA protocol implemen-

tation and the SPHERES data packets. This section describes the data transfer and pro-

cessing between threads of the SCS communications module.

Figure G.19 shows the threads used by the communications module. The module sepa-

rates the reception and transmission tasks in high priority interrupts, but joins them in the

background communications management task which provides the actual interfaces to the

communications module.

Figure G.19 SCS communications module threads

H
W

I COMM Rx

CLK (BIOS)

C
LK Comm TDMA Mgr

SW
I

COMM Tx

PRD (BIOS)

Fast Housekeeping

Telemetry

TS
K

COMM Mgr

DataComm STL DataComm STS

CP Monitor

Pr
io

rit
y

receive data, put into RX pipes

enable transmission SWI

send packets to DR2000 when enabled

manage state of health packets

manage background telemetry packets

prepare TX packets; process RX packets

process large data transmissions

initialize commports

538 APPENDIX G

Data Reception

Figure G.20 presents the data reception processes. When data is received by the com-

mports, a hardware interrupt is posted. The reception hardware interrupt collects the data

and stores it in a temporary buffer. This procedure does process the data to identify com-

plete packages, and only places complete packages in the pipes of lower priority pro-

cesses. The reception interrupt also identifies commands to start a new test, since it resets

the synchronization of the control periods between multiple units (the wait in the control

dispatcher). It does not perform any other data processing; interpreting all other com-

mands and data is done by other threads.

The reception HWI places complete packets in a pipe construct. Pipes are data manage-

ment tool provided by DSP/BIOS which implement queues and call data processing func-

tions automatically. The DSP/BIOS PIP module, used by the SCS, accounts for the multi-

threaded nature of the system. When a packet is placed in the pipe, a semaphore is posted

to the communications management task to indicate that new data is waiting.

The communications management task works in the background of all real-time processes

to handle commands from the laptop and identify packets from other satellites. The com-

munications module of the SCS handles the following types of packets:

• Telemetry - the state information of other satellites is placed in local vari-
ables

• State of health - the state of health of other satellites, including their role, is
stored in local variables

• General commands - commands from the ground station, described below

• Beacon initialization - the configuration of the global metrology system is
uploaded by the ground station

• Large data transfer - packets that form a custom data transmission of the
guest scientist

All other types of packets are ignored by the SCS.

APPENDIX G 539

Figure G.20 Communications data reception process

HW RX

identify commport (STL, STS, Exp)
read all data in port to temp buffer
 if complete packet
 if general command packet
 if test start command
 start test (ctrl module)
 place packet in PIP

HWI COMM Rx

PIP COMM Rx (executed in HWI)

post comm activity SEM

TSK COMM Mgr

read packet from PIP
 if need ack
 place ack in TX mbx
 switch on packet type:
 telemetry: update local variable with other satellites data
 general command: process packet separately
 datacomm: send packet to datacomm
 state of health: identify roles of other satellites
 beacon: set global metrology beacon matrix
 default: ignore

process general command
 synchronize TDMA frames
 place run-time commands in queue
 identify test abort (to CTRL)
 process resets
 enter bootloader (to HKP)
 vent tank (to CTRL)
 hard reset (to HKP)
 soft reset
 reset DR200x (to HKP)
 reset tank (to HKP)

process datacomm packet
 identify packet tag
 if packet correct
 copy data to temp buffer
 if data complete
 copy data to user pointer
 notify user

540 APPENDIX G

Scientists can transfer data between satellites by using the large data transfer tools of the

communications module, even if their data is smaller than a standard SPHERES packet.

These tools automatically format the data for transmission and re-incorporate the data

upon reception by the intended satellite. Scientists must use this tool, since unknown

packet types are ignored by the communications module and are not available to the scien-

tist.

General command packets from the ground station are processed in this task, except for a

test start, which is handled in the hardware interrupt to synchronize the satellites. The

commands are actually executed by other modules (housekeeping, control), but are trig-

gered by this process.

Data Transmission

Figure G.21 presents the processes used for data transmission. The transmission of data

must only occur during the TDMA window assigned to the satellite to prevent contention

in the wireless network. A periodic hardware interrupt, the Comm TDMA Mgr CLK pro-

cess, times the length of the TDMA windows. The start time of a TDMA cycle is com-

manded by the reception of a general command packet from the ground station; the

TDMA manager process records this start time and opens the transmission window by

posting a semaphore to the communications manage task. The communications manage-

ment task then posts the Comm TX SWI if data needs to be transmitted. The Comm TX

SWI sends one complete packet at a time, since the hardware requires that packets be

delivered without long interruptions (no more than 2ms between bytes).

As illustrated in Figure G.21, transmission data can be created by a wide range of pro-

cesses. The periodic housekeeping and telemetry tasks create state of health and state

telemetry packets continuously. The controller send a confirmation every time a test is

started. The scientist can create data in practically any process, including the periodic con-

troller, program and test initialization, and background tasks. This data can be in the form

of standard SPHERES packages by using the publicly available function

APPENDIX G 541

Figure G.21 Communications data transmission process

HW TX

SWI COMM Tx

get packet from PIP
identify commport to use
transmit data to commport

TSK COMM Mgr

if STL or STS enabled
 select first packet available:
 1) hi priority STL
 2) hi priority STS
 3) low priority STL
 4) low priority STS
 write packet to TX PIP

PIP COMM Tx (executed in TSK)

post comm TX SWI

Comm Send Packet

calculate packet size
create checksum
determine channel (STS/STL)
create header
create full packet
add packet to MBX
post comm activity SEM

CLK TDMA Manager

if current window
 enable STS or STL
 post comm activity SEM
else
 disable STL or STS
if loss of comm
 disable satellite (to CTRL)

PRD Telemetry

if time > telemetry_period
 send background telemetry

TSK Datacomm Manager

identify port (STL/STS)
if have data and token
 determine packet size
 send packet
 if last packet
 reset datacomm tag
 else
 update remaining data

PRD Fast Housekeeping

if time > SOH_period
 send SOH

User calls in controller,
GSP task, etc.

SWI Controller

if new test
 send confirmation

542 APPENDIX G

CommSendPacket, or by using the large data transfer tools (datacomm, which used

send packet itself). The interface function CommSendPacket is the only interface to the

communications transmission procedures to ensure that the TDMA protocol is main-

tained.

The CommSendPacket function, which can execute in any type of thread, utilizes the

DSP/BIOS supplied mailboxes to store the data for the communications management

thread to process. Mailboxes provide the necessary atomic operations and controls to

maintain the data safe regardless of what type of thread made the post to the mailbox.

After placing the data on the mailbox the function posts a semaphore to indicate to the

communications management task that new data is ready for transmission.

The communications management task checks four mailboxes for data transmission when

a TDMA window is available: a high and allow priority mailbox for each of the STS and

STL channels. Figure G.21 indicates the order in which the mailboxes are searched. When

a packet is found, the task sends the data to the transmission pipe. This causes a Comm TX

SWI to be posted until the pipe is empty; the Comm TX SWI transmits the packet to the

hardware.

Source Files

• comm.c

• comm_interrupt.c

• comm_process_rx_packet.c

Internal Header Files

• comm_internal.h

• comm_interrupt.h

• comm_process_rx_packet.h

• commands.h

Public Header Files

• comm.h

APPENDIX G 543

G.2.4.1 DR200x Driver

The communications module also implements several procedures to configure and inter-

face with the commports and the DR200x modules. The functions of the communication

driver sub-section are to:

• Manage the communications port

- Read input buffers

- Empty input buffers

- Write to output buffers

- Prevent output buffer overflow

• Send initialization commands to the DR200x

- Send commands

- Wait for response

• Reset DR200x modules

Source Files

• comm_driver.c

Internal Header Files

• comm_driver.h

G.2.4.2 Background Telemetry

The background telemetry sub-module manages the transmission of state information

between satellites automatically at a specified rate. The scientist can define the state vector

variable to use for state transmission at the start of a program or test. The background

telemetry functions will then transmit that state periodically without further intervention

by the scientist. The procedures automatically stores the received information in local

structures, which can be accessed by the guest scientist using the function

commBackgroundStateGet. The background telemetry utilizes the following thread:

• PRD Telemetry - sends the telemetry information at a periodic rate

• TSK Comm Mgr - processes received packets by executing the background
telemetry unpack function

544 APPENDIX G

Source Files

• comm_background.c

Internal Header Files

• comm_intrnal.h

Public Header Files

• comm.h

G.2.4.3 Datacomm

The datacomm sub-module allows scientists to transfer data or arbitrary size and format to

ground and between satellites. The datacomm functions split large packets into standard

SPHERES packets, manage the transmission of the multiple packets, and (if necessary)

assembly the original data structure in the receiving satellite. To use the datacomm func-

tions the scientist must initialize the transmission and reception buffers at the start of a

program, then they only need command a new transmission; reception occurs automati-

cally. The datacomm system allows scientists to poll the state of a transmission. The mod-

ule triggers the GSP task when new data has been received.

The datacomm sub-module utilizes a background task for each channel to divide and

transmit packets:

• TSK_gspdata_manager - Implements a heuristic leaky-bucket scheme to
manage flow control between multiple datacomm transmission requests.
This allows multiple datacomm request to be made simultaneously.

Data reception procedures are executed completely within the general communications

management task.

To utilize datacomm scientists use the following procedures:

• Sending satellite

- datacommSendData (tag, *buffer, size, channel,
to, mode, *TX_done_flag);

tag - unique identifier of the data
*buffer - pointer to data location

APPENDIX G 545

size - size of the data in bytes
channel - STS or STL channel
to - destination (use 0 to broadcast)
mode - low or high priority
*TX_done_flag - user flag to poll until transmission is done

• Receiving satellite (optional)

- In the program or task initialization (but not in test initialization), allocate
space to assemble new data:
datacommInitializeTag(tag, buffer_size, timeout);

tag - unique identifier of the data
buffer_size - size, in bytes, of assembly buffer (size of data transfer)
timeout - timeout, in milliseconds, to cancel assembly of this tag

- Before the data is received (i.e., preferable in the initialization routines),
the scientist must allocate space for the assembled data to be copied into
by using the following function:
int datacommRegisterBuffer(tag, *buffer);

tag - unique identifier of the data
*buffer - pointer to the destination memory space allocated by the sci-
entist

Source Files

• comm_datacomm.c

Internal Header Files

• comm_datacomm_internal.h

Public Header Files

• comm_datacomm.h

546 APPENDIX G

G.2.5 Metrology

The metrology module performs two tasks: collects metrology data and provides the nec-

essary threads to process this data. To achieve this, the metrology module utilizes high pri-

ority interrupts to collect the data and low priority tasks to enable processing, as illustrated

in Figure G.22. The metrology module utilizes the following threads:

• Hardware Interrupts

- IR Rcv - The reception of an infrared pulse indicates the start of a global
metrology cycle. The metrology FPGA collects the time-of-flight mea-
surements of the ultrasound signals; to achieve the highest precision pos-
sible, the IR signals are connected to the FPGA externally via hardware,
independently of the DSP. Actually, it is the FPGA which creates the sig-
nal that interrupts the FPGA. The IR Rcv hardware interrupt allows the
SCS to transmit commands to the onboard beacon or external expansion
items and to turn the thrusters off. Because no other tasks are performed,
this interrupt is relatively short and very fast.

- PADS Int - The hardware metrology interrupt is essential for the opera-
tions of the SCS. The FPGA creates a precise 1kHz clock used to control
the satellite system time, which is maintained through the PADS Int
HWI. The same interrupt drives the periodic software interrupts created
by DSP/BIOS (PRD). But the interrupt does not perform any metrology
data handling or processing directly, instead, it posts the PADS software
interrupt, which collects the data.

• Software Interrupts

Figure G.22 SCS metrology module threads

IR Rcv

H
W

I

PADS Int

SW
I

PADS

TS
K PADS Global TX

Estimator

Pr
io

rit
y

indicates global metrology start

increase tick counters; posts PADS SWI

saves available data; minimal processing

process metrology data

send global metrology infrared pulse

APPENDIX G 547

- PADS - The PADS SWI collects the data available in the FPGA. The
FPGA will always interrupt at 1kHz and will always have IMU data
available. But it will only have global metrology data available during a
global cycle. Therefore, the PADS SWI checks the status of the FPGA to
determine whether to save global data or not.

• Tasks - The availability of two tasks for data processing enable scientists to
compare their algorithms with the standard SCS estimators.

- Estimator - The estimator task is reserved for use with the SPHERES
standard estimator which is part of the SCS. The estimator task, which
runs in the background, perform both long calculations with the global
metrology data and short updates with the IMU data.

- GSP Task - The GSP task is provided to scientists to handle multiple
events, including the reception of metrology data (the full range of events
is described below, in the GSP section). Scientists can implement their
own algorithms in this thread utilizing any combination of inertial and
global data.

- Global TX - This task sleeps in the background until triggered to com-
mand an infrared transmission. The transmission of an IR should only be
done by one satellite, although there are no restrictions from the SCS pro-
gramming.

The flow of data through the metrology system is illustrated in Figure G.23. The inertial

and global data are transmitted through the FPGA to the DSP via the same HWI/SWI

combination; the software checks which data is available. The SWI makes the data avail-

able to the scientist. The PADS SWI collects all the inertial data and immediately converts

the digitized analog values to floating point values in units of [m/s2] for accelerations and

[rad/s] for rotation rates. The inertial data is stored in buffers configured during program

initialization; the scientist can choose to receive the data at any rate in period increments

of one millisecond. Further, the scientist can receive all the data (e.g., an array of 10 data

sets every 10ms) or just the single data collected at that rate (e.g., one array of data every

10ms). The global metrology data is transferred as N packets of 24 measurements and one

time stamp (i.e. 25 words total), where N is the number of beacons programmed during

program initialization. The GSP interface functions to the inertial and global data execute

within the SWI, therefore these functions must completely quickly.

548 APPENDIX G

The data for the standard SPHERES estimator is placed in DSP/BIOS mailboxes. The esti-

mator task pends on those mailboxes and executes when data is available. This allows the

estimator task to remain asleep in the background when no data exists; the use of mail-

boxes allows the estimator task to run for extended periods of time without loosing data.

Therefore, the estimator can process global metrology data over extended periods of time

and then use all the inertial data collected throughout the global metrology processing

period.

Figure G.23 SCS metrology module general algorithms

IR Rcv US Rcv IR Xmt

IR Rcv HWI PADS Int

IMU

FPGA

set pads_in_prog
trigger internal
 beacon

system time tick
PRD tick
trigger PADS SWI

if IMU data
 record sample
 send data to estimator MBX
 call GSP inertial (to GSP)
if Global data
 identify beacon number
 save beacon’s matrix (24 words)
 send data to estimator MBX
 call GSP global (to GSP)
 if last beacon
 reset pads_in_progress

SWI PADS

TSK GSP TaskTSK Estimator

if inertial data
 save IMU data
if global data
 save global data
if global beacon
 run Kalman filter

GSP defined estimator
 shared with other tasks

TSK Global TX

wait for SEM
 synchronize
 send IR

APPENDIX G 549

The interface with the GSP uses a semaphore. The semaphore is posted consecutively, but

it is the responsibility of the scientist to save the data through the inertial and global data

collection functions, since the SCS will not save the data for the scientist otherwise.

Figure G.24 presents a sample timing diagram of the scheduling of the metrology treads

during both inertial and global data cycles.

Source Files

• pads.c

• pads_correct.c

• pads_estimator.c

• pads_request.c

Internal Header Files

• pads_internal.h

• pads_correct.h

• est_USsubfunc.h

Figure G.24 SCS metrology treads scheduling

HW US Rx

HW IMU

HW IR Tx/Rx 10ms

20ms 20ms 20ms 20ms

Time

HWI PADS

SWI PADS

Save IMU

Save Global

TSK Est

GSP Task

1 1 1 1 1 1 1 2 4 6 1 1 1 1 1 1 1 2 4 6 1 1 1 1 1 1 1 2 4 6 1 1 1 1 1 1 2 4 6 1 1 1 1 1 1 1 2 4 6 MBX

1 1 1 1 1 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 1SEM

550 APPENDIX G

Public Header Files

• pads.h

APPENDIX G 551

G.2.6 Housekeeping

The primary function of the housekeeping module is to maintain the ground station

informed on the state of health (SOH) of the satellite and save information to the FLASH

loader variables. The housekeeping module also checks the status of the commports dur-

ing boot time and then periodically throughout operations. As shown in Figure G.25, three

threads are used to perform these functions:

• Fast Housekeeping PRD - The main housekeeping thread, it collects the
information periodically and sends out the state of health packets. Because
the SOH packets are used to acknowledge commands from the ground sta-
tion, the housekeeping task is also used to acknowledge commands.

• FLASH TSK - Because the boot loader program resides in the FLASH, it is
essential to protect that space in memory. Therefore, the SCS provides a sin-
gle-point interface to the FLASH via this task. The task filters the write
addresses to ensure that programs do not overwrite the boot loader (although
the could overwrite themselves). This task implements the time delays nec-
essary between FLASH write cycles.

• CP Monitor TSK - This task is started upon boot to check the interrupt flags
of the communications ports, which exhibits a race condition after a hard
reset. The task resets the commport interrupt flags. During operations the
task checks that the status of the commports corresponds to the indicated
interrupt flags approximately once a second.

Figure G.25 SCS housekeeping module threads

SW
I PRD (BIOS)

Fast Housekeeping

TS
K

FLASH

CP MonitorPr
io

rit
y periodic: SOH; WDOG; LEDs; int beacon

monitor commport interrupts

write to flash memory

552 APPENDIX G

State of health packets are created and transmitted at 1Hz by default. To create the SOH

packets, the housekeeping module collects information from the other modules. The state

of health of the satellite is collected as follows:

• System time (from system)

• Program ID (from system)

• Tank usage (from propulsion)

• Test time (from system)

• Maneuver time (from control)

• Last test result (local, set by control)

• Number of received IR pulses (from metrology)

• Communications status (from communications)

• Beacon information (from system)

• Controller state (from control)

• Acknowledgement (local, commanded by communications)

The housekeeping periodic interrupt provides the software interface to the metrology

FPGA digital outputs which consist of the Enable LED, the internal watchdog, and the

internal beacon. The housekeeping interrupt controls the state of the Enable LED on the

SPHERES control panel based on the status of the controller. It provides a software inter-

face to the beacon control which can be used in any other module.

The interface of the watchdog is of special importance, since the watchdog control signal

must be continuously flipped to prevent the watchdog circuitry from forcing a hardware

reset. If the housekeeping task does not respond (any task with higher priority does not

return control) the system will reset. This function is not performed at the lowest priority

because it is possible that metrology or autonomy algorithms which run in background

tasks take several seconds, which would cause a hardware reset.

The fact that the housekeeping interrupt controls both the watchdog and the FLASH

loader variables is used to provide two functions to the satellites: the ability to force a

hardware reset and to enter boot loader mode automatically. To force a hardware reset the

APPENDIX G 553

housekeeping thread is commanded to no longer flip the watchdog control line. To enter

boot loader mode, the housekeeping thread first writes the boot loader variables with

Enter_boot set to 0x01, and then forces a hard reset.

By default the housekeeping task will save the following information once a second to the

FLASH:

• Tank time

• Satellite ID (if changed)

• Beacon locations (if changed)

• IMU calibration data (if changed)

• Enter boot (if commanded)

This information is shared by any program since the physical configuration of the satellite

(Satellite ID, IMU calibration data) does not change between programs. Further, since the

beacon locations are expected to be constant each test session, they only need to be

uploaded when the first program is used. By saving the tank time once a second, the

housekeeping module maintains a reasonable estimate of tank usage even if the unit is

reset.

Source Files

• housekeeping.c

• util_FlashLib.c

• util_BranchTo.c

Internal Header Files

• housekeeping_internal.h

• util_FlashLib.h

• util_timing.h

Public Header Files

• housekeeping.h

554 APPENDIX G

G.2.7 GSP Interface

The scientist code interfaces with the other modules through the GSP interface. The other

modules include calls to the functions of the GSP module, so that scientist can concentrate

all their work in one module. The GSP interfaces with the control and metrology modules,

operating as part of the PADS SWI and the Controller SWI. All the modules can post a

semaphore to trigger the GSP Task, although the scientist can select which events trigger

the task. These interfaces are illustrated in Figure G.26.

The GSP functions available to scientists are:

• Program Initialization

- gspIdentitySet - Sets the logical identity of the satellite.

- gspInitProgram - Run once during boot time, before the DSP/BIOS real-
time environment is set, to initialize global variables and perform other
functions required before the real-time system is started. These include:

Initializing the TDMA windows

Allocating the buffers for inertial metrology data

Configuring the metrology FPGA for the global metrology setup

Setting metrology (inertial and global) rates

Setting the background telemetry period

• Control

- gspInitTest - This function is run once at the start of each test. The func-
tion should initialize any variables used in the GSP control algorithms
and set the desired control period for that test.

Figure G.26 SCS GSP module threads

SW
I PADS

Controller

TS
K

GSP Task

Pr
io

rit
y

custom data collection

custom controller

custom data processing / background process

APPENDIX G 555

- gspControl - This function implements the control algorithm for the test.
It can be programmed directly or it may call other functions developed by
the scientist.

• Metrology

- gspPadsInertial - This function should collect the data and store it for
later processing, since the function is run within the 1kHz PADS SWI. If
the scientist can perform quick calculations with the inertial data, this
function can also update the system state using the inertial data. If the
GSP task takes extended periods of time, this function should provide
structures to save data even if the task is not available.

- gspPadsGlobal - This function should only collect the global metrology
data and store it for later processing because it is run within the 1kHz
PADS SWI. If the GSP task takes extended periods of time, this function
should provide structures to save data even if the task is not available.

• Task

- gspInitTask - This function executes once when DSP/BIOS sets up the
real-time environment, including the GSP Task thread (i.e., it runs shortly
after main() terminates). The function should initialize any variables
needed by the task, as well as setup the masks for events that will trigger
the task.

- gspTaskRun - This function executes in the GSP Task thread when an
event occurs that posts a semaphore. The possible events which can start
this task are:

CTRL_DONE_TRIG - a controller period is done

DATA_TX_DONE_TRIG - datacomm has finished transmitting data

DATA_RX_DONE_TRIG - datacomm has finished assembling data

PADS_GLOBAL_START_TRIG - an IR pulse was received

PADS_GLOBAL_BEACON_TRIG - global metrology data received

PADS_INERTIAL_TRIG - inertial metrology data received

PADS_ESTIMATOR_DONE_TRIG - the default estimator is done

TASK_TIME_TRIG - the task sleep period is over

TEST_START_TRIG - a test was started

GSP_USER_TRIG - user trigger
Scientists can select which events will trigger the task by setting a mask
at during the task initialization.

556 APPENDIX G

Since all of the events share the same task, the scientists must carefully
use this resource and realize that the task may not respond to an event in
real-time. For example, if the task is used with a custom estimator, and it
is also used to perform post-control data processing, the post-control
functions may not be carried in real time. Further, the task has a maxi-
mum semaphore depth of 16, therefore no more than 16 events will be
accounted for and new events are lost.

Scientists can use any of the functions defined in the public header files of the other mod-

ules. These provide scientists with full knowledge of the state of the satellite and inter-

faces to all the hardware.

APPENDIX G 557

G.3 Standard Libraries

The following section describe the available standard functions at the time of print of this

thesis. These functions can be used by scientists to implement simple algorithms outside

their area of interest so that they may concentrate on development of their program. They

also serve as baseline algorithms for scientists to compare their results.

G.3.1 Controllers
• Angular control - 3D controllers to apply proportional/derivative (PD) con-

trol of angular position and control with respect to the global metrology
frame with the option to specify the gains.

• Position control - 3D controllers to apply proportional/derivative (PD) and
proportional/integral/derivative (PID) control laws to the position and veloc-
ity of the satellites with respect to the global metrology frame with the
option to specify the gains.
Also provides a function to transform delta-V commands into x-y-z body
forces, which can then be transformed to thruster on/off times by the mixers.

• Switchline control - 3D switchline controllers for position and attitude con-
trol. Two versions are available: one with coupled position and attitude and
one with decouple position and attitude.

G.3.2 Estimators
• Extended Kalman Filter - An extended Kalman filter which utilizes both

inertial and global data to estimate the position and attitude of the satellite in
the global frame.

• Range and bearing - An extended Kalman filter to obtain the range and
bearing between two satellites which use their internal beacons for global
metrology. This provides relative state information in multi-satellite sys-
tems.

G.3.3 Maneuvers
• Regulation - Regulates a constant rotation about one axis while maintaining

the satellite in the same position.

• Open Loop Translation and Rotation - returns the necessary thruster on/
off times for an open loop translation or rotation with respect to the body
frame.

558 APPENDIX G

G.3.4 Mixers
• Standard Mixer - Creates a set of thruster on/off times based on input force

and torque parameters, duty cycle, and control period.

• Mixer with Thruster Correction - Enhances the standard mixer by correct-
ing for differences in the actual measured thrust of each thruster.

G.3.5 Terminators
• Timed terminators - Terminators to end a maneuver or test in a specified

period of time after they start.

G.3.6 Math
• Matrix and Vectors Manipulation Methods

- Square of a matrix (B = A * A)

- Matrix times vector (c = A * b)

- Matrix times matrix (C = A * B)

- Matrix time matrix transpose (C = A * B’) and (C = A’ * B)

- Matrix add (C = A + B)

- Vector add (c = a + b)

- Vector outer product (c = a * b)

- Vector inner product (c = a’ * b)

- Calculate skew symmetric matrix of A

- Normalize a vector

- Calculate the magnitude of a vector

- Invert a 3x3 matrix

- Determination of the body to global rotation matrix

- Determination of the rotation matrix for use with quaternions

• Matrix Inversion Methods - provides several methods to invert matrices,
including: Cholesky decomposition and LU decomposition.

• Jacobi - Computes the eigenvalues and eigenvectors of a matrix.

• LTI Filter - Implements a causal form II LTI filter.

APPENDIX G 559

G.3.7 Utilities
• Data compression - Provides utilities to collect large amounts of data from

either the Global or the Inertial metrology system and compress the data
before downloading it through the communications module.

• Serial print - Enables scientists to transmit serial data through the expansion
port (in the satellites) or the simulation debug file (in the simulation) without
having to use the standard ANSI C printf function which requires sub-
stantial memory space.

560 APPENDIX G

